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Abstract 

This paper addresses the problem of implementing simul-
taneous localisation and map building (SLAM) in very 
large outdoor environments.  A method is presented to 
reduce the computational requirement from ~O(N2) to 
~O(N), being N the states used to represent all the land-
marks and vehicle pose. With this implementation the 
memory requirement are also reduced to ~O(N). This al-
gorithm presents an efficient solution to the full update 
required by the Compressed Extended Kalman Filter algo-
rithm (CEKF). Experimental results are also presented.  

1 Introduction 
The problem of localization when a map of the environ-
ment is available has been solved before with very effi-
cient algorithms [1] [2].  Similarly, there are well proven 
techniques for the generation of environment maps using 
observations obtained from known locations [3]. There 
are also successful real-time implementations of localiza-
tion loops based on Bayesian approaches [4]. 
A more challenging problem is the solution of both posi-
tion and localisation at the same time. This problem is 
called “simultaneous localization and map building” 
(SLAM) [5],[6] and “Concurrent Map and  Localisation” 
(CML) [7]. 
Optimal SLAM approaches based on Bayesian filtering 
with non-Gaussian assumptions are extremely expensive 
making them difficult to apply in real time. Nevertheless 
these methods present some significant advantages such 
as the inherent solution of the data association problem. In 
fact they can address the localization problem starting at a 
completely unknown position and to solve the “kidnapped 
robot” problem, that is a robot that is suddenly moved to 
another position without being told. Some approaches 
based on these techniques [2], approximate the probability 
representation using samples of the probability density 
distribution. Efforts to apply these techniques in real time 
are started to appear. In [8] and [9] a Sum of Gaussian 
(SOG) distribution is used to build a feature map of land-
marks to represent the environment and its application to 
the full-Bayesian SLAM problem is presented.  It is also 
argued that the SOG method provides a computationally 
tractable implementation of the full Bayes SLAM.  

There are several optimal and sub-optimal techniques that 
are attractive to solve SLAM in real time, most of them 
based on the Extended Kalman Filter (EKF) framework, 
[7],[10] and [11]. These techniques assume Gaussian or at 
least uni-modal density probability distributions. The ma-
jor problems of EKF implementations are: 
1. The estimation must always have an uni-modal, more 
strictly a Gaussian, probability distribution. 
2. Revisits to known places and external absolute observa-
tions such as GPS measurement can produce ‘strong’ up-
dates, generating incorrect corrections.   
3. A large number of map objects will quadratically in-
crease the memory and computational power require-
ments. 
The first two limitations can be overcome by using Hybrid 
combinations of EKF and non-Gaussian Bayesian filters 
[12]. The non-Gaussian strategy is applied in the initiali-
sation phase or at any stage when the probability distribu-
tion can not be uni-modally approximated, that is when 
the data association is not possible. In this case the EKF 
based system will be in fault since the high uncertainty 
prevents the data association making impossible the in-
corporation of the observation using the EKF update. Un-
der this condition the usage of those observations will 
generate multi-hypotheses in the estimations. In [12], the 
Bayesian estimator is used until sufficient information is 
obtained to collapse all the multi-hypotheses in a unique 
uni-modal distribution that the normal EKF filter is able to 
use. 
The third item addresses the computation and memory 
requirement of full SLAM. It is well known that this algo-
rithm has computational requirements of ~O(N2), being N 
the states used to represent all the landmarks and vehicle 
pose.  In [5] the Compressed EKF (CEKF) was intro-
duced. This algorithm dramatically reduces the computa-
tional requirements of SLAM while generating equivalent 
results to the full standard implementation. This algorithm 
represents a remarkable improvement when the vehicle 
operates in a local area. Still a full SLAM update is re-
quired when a transition to a different area is made. 
Another aspect that has not been addressed is the memory 
requirement. A system with 10000 states will require up 
to 800 Mb to maintain the covariance of the states. Both 
memory and global update calculation have a cost of order 
~O(N2) as stated before. When using the CEKF the cost in 
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the global update evaluation is not critical provided the 
transitions from local areas are not frequent. There are no 
memory usage improvements that can be obtained with 
this approach. 
The reason of the expensive memory requirements is due 
to the need of maintaining cross-covariance terms be-
tween all the states. This implies that the complete covari-
ance matrix has to be maintained in fast processing mem-
ory (RAM). We argue that the maintenance of the com-
plete covariance matrix is important in cases where the 
cross-correlation between states is strong or at least not 
negligible. Any attempt to conservatively de-correlate a 
subset of states implies an increase in the value of some 
diagonal sub-matrixes. If subsets of lightly correlated 
states are present then de-correlation of these states can be 
done with a small loss in the predicted estimation quality.  
This paper makes use of RLR (Relative Landmark Repre-
sentation) to generate close to optimal de-correlation that 
will significantly reduce the computational and memory 
requirement in large environments. 
This work is organized as follows. Section 2 presents a 
brief introduction to the CEKF filter. The de-correlation 
algorithm is presented in section 3 and the integration 
with the CEKF in SLAM applications is described in sec-
tion 4. Finally experimental results are presented in sec-
tion 5 with conclusions given in section 6. 

2 Optimal Compressed Extended Kal-
man Filter (CEKF). 

This section presents a brief summary of the CEKF algo-
rithm. A full description is presented in [5]. Assume that 

for a period of time { }1 2/k k k kW = £ £ , the model 

and observations of system can be expressed in the fol-
lowing form:  
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Where the model and observation noises 

( ) ( ) ( ), ,a b hk k kn n n  are Gaussian and uncorrelated.  

An EKF filter running during the period W  can also be 
evaluated using the “Compressed EKF” algorithm as 
shown bellow. At the beginning of the periodW , k = k1, a 
set of auxiliary matrices are initialized: 
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At every prediction or update stage, during the time pe-
riod W , a normal EKF algorithm is run using the subsys-
tem Paa, Xa.. An additional set of matrices is maintained to 
store the information gathered to be transfered to the rest 
of the system in the full update. The size of these matrices 
will always be smaller than Paa. During the period 

1 2k k k£ £ any prediction step is implemented using the 
standard EKF prediction for the sub-system Paa, Xa and 
the update of the auxiliary matrices: 
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An observation is processed with a standard EKF update 
equations for the sub-system Paa, Xa and the update of the 
auxiliary matrices as follows: 
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At the end of the intervalW , k = k2, the update of all the 
states in the system and covariance matrix is performed. 
This step is called global or full update: 
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It can be seen that the knowledge of 

( ) ( ) ( ) ( ), , ,b bb ab baX k P k P k P k  is only explicit at 

times k = k1 and k = k2. No explicit information about this 
family of states and their related covariance and cross-
covariance matrices is required at times k / k1 < k < k2. All 
this information is implicitly contained (at any instant k) 

in the matrixes , ,k k kf y q . The matrices ,k kf y have 

dimensions Na * Na and the vector kq  is of order Na. All 

the information (covariance and cross-covariance values) 
related to the states Xb(k) remains compressed in these 
three auxiliary matrices. 
It is important to note that the CEKF estimation is optimal 
and generates the same results as full EKF implementa-
tion. 
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3 De-correlation algorithm  
The maintenance of the complete covariance matrix is 
important in cases where the cross-correlation between 
states is strong or at least not negligible. Any attempt to 
conservatively de-correlate a subset of states implies an 
increase in the value of some diagonal sub-matrixes. If 
subsets of weakly correlated states are present then de-
correlation of these states can be done with a small loss in 
the predicted estimated quality.  
Unfortunately when a map represents the landmarks in 
absolute form with respect to a single global frame, all the 
states are or tend to be strongly correlated. This correla-
tion is of major relevance when a conservative de-
correlation procedure is desired. Most of the state’s high 
correlation coefficients are due to the map representation 
and not due to map estimation problem itself. An appro-
priate map representation that avoids this problem is the 
Relative Landmark Representation (RLR). This represen-
tation divides the map into sub-regions where the land-
marks are defined with respect to local coordinate frames. 
For the 2-D case each local frame is defined based on two 
local landmarks represented in global coordinate. The 
high correlation characteristic persists but only between 
the frame base landmarks and the vehicle states. These 
landmarks represent a small subset of the total landmark 
population.  
An attractive aspect of the RLR is that the cross-
correlation between relative landmarks that belong to dif-
ferent frames (or constellations) tends to be extremely 
low, especially when these constellations are distant. Then 
a strategy that cancel the weakly cross-correlation terms 
and maintain the strong cross-correlation terms can be 
implemented. This sub-optimal simplification will gener-
ate results very close to optimal when the RLR representa-
tion and appropriate map management strategies are used.  
The algorithm to cancel the weakly cross-correlation 
terms in a consistent manner is now presented. 
Given a symmetric nonnegative definite matrix 

2 20, xP P R≥ Œ  it is possible to obtain a de-

correlated (diagonal) matrix D P≥  according to 
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This is true since t  is a nonnegative definite matrix: 
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In the general case it is possible to de-correlate the covari-
ance matrices corresponding to two groups of states by 
using a similar technique: 
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A conservatively de-correlated block diagonal matrix 
bound can be obtained for this matrix: 
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The matrix t will be nonnegative definite if the matrices 

a  and b  are formed with the following expressions: 
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Equation 9 guarantees that the matrix t  will be, at least, 
nonnegative definite. 
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Selecting , , 1i k k ik k= =  the coefficients α and β be-

comes: 
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A more appropriate selection of the family { },i kk  can be 

done considering the cross-correlations coefficients: 
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Then α and β are evaluated: 
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Finally the diagonal coefficients are updated: 
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If the states to be de-correlated have very low correlation 

then the correction terms ,
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be small. 

4 Sub-Optimal CEKF SLAM 
This section presents the integration of the de-correlation 
approach presented in the previous section to the CEKF 
algorithm. In this implementation the following assump-
tions are made: 
1. The landmark map is created using a Relative Land-
mark Representation (RLR). 
2.   All correlations between states will be maintained ex-
cept the correlations between relative landmarks that be-

long to different constellations. These states will be de-
correlated using techniques presented in the previous sec-
tion. 
3.  After each CEKF global update the generated cross-
correlation between landmarks of different constellations 
will be small making the de-correlation strategy close to 
optimal. 
Any landmark that is a base frame landmark is called ‘ab-
solute landmark’ since it is represented in global coordi-
nates. A landmark that is represented in a local frame is 
named ‘relative landmark’.  
A state is called ‘absolute state’ if it is a state related to 
the vehicle kinematics or to an absolute landmark. Any 
state associated to a relative landmark is called ‘relative 
state’.  
The assumptions (1) and (3) are strictly related. If the 
RLR map representation is used then the correlation be-
tween the states representing the relative landmarks that 
belong to different frames tends to be very small. Con-
versely, the correlation between absolute states tends to be 
strong especially between states of close absolute land-
marks. Then it is possible to define an approach that pre-
serves the cross-correlation of any absolute state with any 
other state (relative or absolute) and ignores (de-correlate) 
any cross-correlation between two relative states associ-
ated to two relative landmarks that belong to different 
constellations (defined in different local frames). The ap-
proach preserves the cross-correlation terms between rela-
tive landmarks of the same constellation. 
A normal EKF full SLAM performing this de-correlation 
in each update will result in excessively conservative re-
sults since over-bounding will be required in each update 
to de-correlate. Conversely, a CEKF will only require the 
full update after many local updates rendering in a less 
conservative over-bounding strategy. According to the 
CEKF a global update has to be done only when the vehi-
cle abandons a sub-region.  
The landmarks states are divided in different categories 
according to their location with respect to the actual posi-
tion of the vehicle and their frame reference. The active 
states group, Xa, is formed with the states of all the rela-
tive and base landmarks in the local area and the base 
landmarks that have relative landmarks in the local area, 
(XaR, , XaB.) . Additionally it includes the vehicle states. 
The passive states group (Xb) is formed with the relative 
landmarks states of the constellations where the vehicle is 
not navigating in and all other base landmarks states.  
The states of the passive relative landmarks can then be 

divided in two groups: group 
1bRX , states associated with 

relative landmarks that belong to the same constellation of 
active relative landmarks or to adjacent constellations and 

group 
2bRX , states of relative landmarks that belong to 

distant constellations. The cross-correlations between 

states 
1bRX with 

2bRX  and aRX with 
2bRX are set to 

zero with appropriate modification of the covariances 

related to 
1bRX and aRX  according to the proposed de-

2734



www.manaraa.com

 

correlation technique. It can be seen that the only ele-
ments that needs to be maintained are contained in a band 
matrix of reduced size. The cross-correlation with the 
absolute states is also maintained. 
The complete de-correllation procedure is done in each 
global CEKF update. In practice the most relevant infor-
mation that the filter obtains is transmitted to the states 
corresponding to the vehicle pose, base landmarks and 
local relative landmarks. This implies that the memory 
and computation requirements will be ~O(N*Na), assum-
ing a constant number of landmarks Na is used in each 
local region. Since Na is << N the computation and mem-
ory requirement of the algorithm are dramatically re-
duced. 
The implementation of the strategy proceeds as follows: 
The complete optimal global update is done after n CEKF 
internal steps on the passive states: 
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In the sub-optimal CEKF the improvement of bbP  is ig-

nored, then 
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The CEKF auxiliary matrixy is still needed to evaluate 

the diagonal elements of Pbb to perform the de-correlation 
procedure. The objective is to transfer the new informa-
tion to the states representing the vehicle pose, absolute 
landmarks and local relative landmarks, ignoring com-
pletely the covariance changes in the non-local relative 
landmarks states. From the viewpoint of the non-local 
relative landmarks, no change in their quality is obtained.  
In actual SLAM applications it can be observed that the 
cross-correlation factors between relative landmarks of 
different constellations have values of order 10-4 or 
smaller. This value becomes much smaller for distant con-
stellations. This characteristic makes the conservative de-
correlation close to optimal since very small virtual noise 
has to be added to the relative landmarks covariances to 
obtain the de-correlated matrix bounds. 
A less aggressive de-correlation strategy can be imple-
mented by accepting the existence (after de-correlation) of 
cross-correlation between relative landmarks of different 
constellations provided that these constellations are geo-
graphically close. Then de-correlation is forced only be-
tween distant constellations. In the particular case when a 
cross-correlation factor is not small enough one of the 
involved states can be degraded to quality zero.   
 

5 Results 
The algorithm was implemented using the data logged 
with the utility vehicle shown in Figure 1. The vehicle is 

retrofitted with velocity and steering encoders, two lasers 
range sensors and GPS. The GPS is only used to obtain 
ground truth when operating with enough number of satel-
lites. The vehicle operated in a large outdoor unstructured 
environment similar to the one shown in Figure 1. 
 

 
Figure 1. Utility vehicle and outdoor environment 

The final trajectory and map using the Full SLAM 
(CEKF) and the sub-optimal CEKF are superimposed in 
Figure 2 and the total estimated error in position is pre-
sented in Figure 3 . In this case an aggressive de-
correlation policy was used. The filter conservatively ig-
nores the cross-correlation between relative states that 
belong to different constellations, independently of 
weather these constellations are close or not.   

 

Figure 2. Final Trajectory and Map 

 

Figure 3 Estimated error for car position 
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Figures 4 and 5 present the position and heading differ-
ence between the optimal and sub-optimal approaches. It 
can be seen that the maximum discrepancy is smaller than 
a meter and a degree respectively.  

 

Figure 4 Difference between full SLAM and  conserva-
tive approach for latitude and longitude estimation.  

 

Figure 5 Difference between full SLAM and  conserva-
tive approach for vehicle heading estimation.  

Finally Figure 6 presents the correlation coefficient ma-
trix. A black region represents the elements where the 
correlation was forced to zero.  
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Figure 6 Correlation coefficient matrix. The black 

elements correspond to the coefficients that were set to 
zero.  

6 Conclusions 
This paper presents an approach to reduce the computa-
tional requirement of SLAM algorithms from O~(N2) to 
approximately O~(N*Na), being Na the states representing 
the landmarks in the local area. With this implementation 
the memory requirement are also reduced to order N*Na. 
Since Na is << N the computation and memory require-
ment of the algorithm are dramatically reduced.  

7 References 
[1]  H. Durrant-Whyte, "An Autonomous Guided Vehicle 

for Cargo Handling Applications", Int. Journal of 
Robotics Research, 15(5), pp.  407-441, Oct. 1996  

[2] W. Burgard, A. B. Cremers, D. Fox,  D. Ahnel, G. 
Lakemeyer, D. Schulz, W. Steiner and S. Thrun, 
“Experiences with an interactive museum tour-guide 
robot”, Artificial Intelligence, 114(1-2),  pp.3–55,  
Jan. 1999. 

[3] A. Elfes,  “Using occupancy grids for mobile robot 
perception and navigation”. Computer, 22(6), pp. 46-
57, Jun. 1989. 

[4] S. Thrun, D. Fox and W. Bugard, “Probabilistic 
Mapping of and Environment by a Mobile Robot”, In 
Proc. of  IEEE Int. Conf. on Robotics and Automa-
tion, Belgium, May 1998, pp. 1546-1551. 

[5] J. Guivant and E. Nebot, “Optimization of the Simul-
taneous Localization and Map-Building Algorithm 
for Real-Time Implementation”, IEEE Trans. on Ro-
botics and Automation, Vol 17, No 3., June 2001, pp 
242-257. 

[6] J. Castellanos, M. Devy and J. Tardos, “Simultaneous 
localization and map building for mobile robots: a 
landmark based approach”, Presented at IEEE con-
ference on Robotic and Automation, Workshop W4, 
San Francisco , USA, April 2000. 

[7] J. Leonard and H. J. S. Feder, “A computationally 
efficient method for large-scale concurrent mapping 
and localization”, In Proc of the Ninth Int. Sympo-
sium on Robotics Research, Utah, USA, October 
1999, pp. 316-321.  

[8] Hugh Durrant-Whyte, Somajyoti Majumder, Marc de 
Battista, and Steve Scheding, “A Bayesian Algorithm 
for Simultaneous Localisation and Map Building”, 
ISRR. 

[9] Majumder S, “Sensor Fusion and Feature Based 
navigation for Sub-sea Robots”, PhD. Thesis, Univer-
sity of Sydney,  Sydney, Australia, 2001. 

[10] J. Guivant, E. Nebot and H. Durrant-Whyte, "Simul-
taneous localization and map building using natural 
features in outdoor environments", In Proc of IAS-6 
Intelligent Autonomous Systems, Italy, Jul. 2000, pp. 
581-586. 

[11] Knight J., Davison A., “Constant Time SLAM using 
Postponement”,  IROS 2001. 

[12] Masson F., Guivant J, Nebot E, “Hybrid Architecture 
for Simultaneous Localization and Map Building in 
large outdoor areas”, submitted to IROS 2002. 

2736


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	footer: 
	header: 


